

GLAST Large Area TelescopeCalorimeter Subsystem

3.0 Systems Engineering

Bob Kraeuter Naval Research Lab, Washington DC Calorimeter Systems Engineer

rkraeuter@swales.com (202)-404-1461

Outline

- □ System Overview
- □ Requirements
- □ Documentation Status
- □ Interfaces
- □ Technical Budgets
- □ Verification & Test
- □ Engineering Model

System Overview

Modular Design

4 x 4 array of Calorimeter modules

System Overview

Each module

- □ 8 layers of 12 Csl(Tl) crystals
 - Crystal dimensions
 - 27 x 20 x 326 mm
 - Hodoscopic stacking
 - alternating orthogonal layers
- Dual PIN photodiode on each end of crystals
- Mechanical packaging
 - Carbon Composite cell structure

- □ Electronics boards attached to each side
 - Interface connectors at base of calorimeter
- Outer wall is EMI shield and provides structural stiffness as well

Calorimeter Module Architecture

Requirements Flow

CAL Level III Requirements

Reference: LAT-SS-00018

Parameter	Requirement	Verification	Expected Performance
Energy Range	20 MeV – 300 GeV 20 MeV – 1 TeV (goal) 5 MeV – 100 GeV, single crystal	Simulation, Beam Tests	Required performance ~2 MeV threshold (BOM)
Energy Resolution (1 sigma)	< 20% (20 MeV < E < 100 MeV) < 10% (100 MeV < E < 10 GeV) < 6% (10 GeV < E < 300 GeV, incidence angle > 60 deg)	Simulations and EM and LAT calib unit Beam Tests	Simulations demonstrate required performance
Energy Resolution (1 sig) Single Crystal	< 2% for Carbon lons of energy >100 MeV/nuc at a point.	EM (and Calib Unit) beam test	< 0.5% (correlation of ends removes Landau)
Design	Modular, hodoscopic, CsI > 8.4 RL of CsI on axis	Inspection	8.6 RL
Active Area	>1050 cm ² per module < 16% of total mass is passive mtrl.	Inspection	1080 cm ² per module < 14% is passive
Position Resolution	< 3 cm in 3 dims, min ionizing particles, incident angle < 45 deg.	Test with cosmic muons, all modules	< 1.5 cm in longitudinal measurement
Angular Resolution	15 ´ cos(q) deg, for cosmic muons in 8 layers	Test with cosmic muons, all modules	8 ´ cos(q) deg
Dead Time	< 100 ms per event < 20 ms per event (goal)	Test	< 22 ms per event

CAL Level III Requirements (cont)

Parameter	Requirement	Verification	Expected Performance
Low Energy Trigger	>90% efficiency for 1 GeV photons traversing 6 RL of CsI < 2 ms trigger latency	Simulations	> 93%
High Energy Trigger	>90% efficiency for 20 GeV photons depositing at least 10 GeV	Simulations, Calib unit test in beams	> 91%
Size (module)	< 2 ms trigger latency < 364 mm in width (stay clear) < 224.3 mm in height (stay clear)	Inspection	363 mm 224 mm
Mass	< 1440 kg (90.0 kg/module)	Test	1376 kg
Power	< 91 Watts (conditioned) ** (5.69 W/module)	Test	< 54 Watts (conditioned)
Temperature Range	 - 10 to +25 C, operational - 20 to +40 C, storage - 30 to +50 C, qualification 	Subsystem TV Test 4 cycles, acceptance 12 cycles, qualification	Required performance
Reliability	> 96% in five years	Analysis	> 98% in five years (15/16 modules) LAT-TD-00464-03

** Modified to 64 Watts, pending CCB action

Derived Requirements

- □ LAT CAL Subsystem Level IV Specification LAT-SS-00210
 - Contains 164 detailed design requirements derived from CAL Level III Specification – LAT-SS-00018
- □ LAT CAL Verification & Environmental Test Plan LAT-SS-01345
 - Details approach to verifying each Level IV requirement
 - Lists verification methods used
 - Mostly verified by Test, 53 reqmts verified by analysis/inspection
 - Assembly levels at which verification is performed
 - 114 requirements are verified at the components level

Documentation Status

- Major documents released
 - CAL Subsystem Level III & IV specs
 - CAL LAT Interface Control Document
 - CAL LAT Interface Definition Drawing (needs update)
 - CAL Subsystem Verification & Environmental Test Plan

	Qty	Completion Date
Released Documents/Drawings	99	60% completed
Documents Near Completion	24	90% by March 29
Drafts	23	70% by April 19
Miscellaneous Procedures	7	100% by April 19
Flight ASIC Documentation	10	100% by May 10
AFEE Board Analyses	3	100% by May 10
Total	166	

Calorimeter Interfaces

Mechanical Interface – CAL to Grid

Mechanical Interface – TEM to CAL

Mass Budget

The Calorimeter Subsystem meets LAT rqmts with a margin of 4.6%

Component	Material	Mass (kg)					
Converted Detectors Flagranate	Csl Crystals	74.24					
Crystal Detector Elements	Diodes, wire, wrapping	0.800					
Composite structure	Graphite epoxy	2.874					
Structure shell	Aluminum	5.783					
Dampers	Silicone	0.230					
AFEE Circuit Card Assy's (incl AFEE – TEM cables)		1.660					
Fasteners, miscellaneous		0.400					
C	AL Module Total Mass	85.99					
	Calorimeter Total Mass						
	CAL Module Allocation						
	Mass Margin	64					

The total amount of passive material (non-CDE) contained in the Calorimeter (13.7%) meets LAT rqmt of < 16% (Level III - 5.5.4)

Power Budget

The Calorimeter Subsystem has a 70% power margin

Component	Ougatitu	Power (mW)
Component	Quantity	Each	Total
GCFE	48	11.4	547
GCRC	4	64	256
ADC MAX145	48	0.042	2
DAC MAX5121	1	4.5	4.5
References	2	13.5	27
	Total Power	per AFEE (mW)	836.5
	CAL Module	Total Power (W)	3.35
	Total Power (W)	53.5	
	91**		
	37.5		

^{**} Modified to 64 Watts, pending CCB action

Verification & Test

- Engineering model to undergo Qualification testing
 - EM Qual is dry run for Flight Model A Qualification testing
 - Risk mitigation for Flight production schedule
 - Test procedures will be updated prior to FMA testing
 - EM is specially instrumented to assist thermal profiling
- Structural Model (SM) and Structural Flight Model (SFM) testing will qualify change in Composite Structure process
 - Vibration testing at Qualification levels
 - Flight structure with mass simulators for CDEs, electronics
- Qualification model (FMA) and Flight spare (FMB) are first units off flight production line
 - Vibration testing at Qualification levels
 - 12 Thermal-Vacuum Cycles at Qualification levels
 - EMI/EMC testing
- □ Sixteen Flight models undergo Acceptance testing
 - Vibration testing and 4 Thermal-Vacuum Cycles at Acceptance levels

Naval Research Lab Washington DC

Verification & Test (cont)

- Verification Process
 - In-process inspection/verification essential for minimizing assembly issues and verification anomalies
 - All CDEs undergo functional testing prior to integration
 - Sample CDEs from lots individually Qual tested
 - Each Pre-Electronics Module functionally tested prior to next level of integration
 - Every Analog Front End Electronics assembly fully tested and burned in prior to PEM integration
- Test configuration includes Engineering model TEM and PS
 - Separate sets for EM CAL and each Flight Model CAL
 - EM1 TEM & PS for EM
 - EM2 TEM & PS for Flight models
 - EM TEM & PS are supplied fully tested and capable of operation in full test environment

All operations are performed using established procedures and under temperature, humidity, and contamination controlled environment

Verification Matrix

From CAL Module Verification & Environmental Test Plan - LAT-SS-01345

		HARDWARE					N	IEC	HAN	IICA	L		E	LEC	CTR	ICA	Ĺ	Т	HEF	RMA	L						OTHER
MODEL	LEVEL	COMPONENT (ITEM)	QUANTITY	TYPE	SUPPLIER	STATIC LOAD	SINE BURST	SINE SWEEP	RANDOM VIB	ACOUSTIC	PRESSURE PROFILE	MASS PROPERTIES	INTERFACE VERIFICATION	EMC/EMI	ESD COMPATABILITY (GRD)	MAGNETICS	FUNCTIONAL	THERMAL VACUUM	THERMAL BALANCE	THERMAL CYCLE	HUMIDITY	RADIATION	BAKEOUT	BEAM TEST-EM SHOWERS	BEAM TEST-HADRONS	BEAM TEST - HEAVY IONS	COMMENTS
\vdash	С	VM2 Csl Det Elements (CDE)	12	O	F	Α			Α			М	Т	Α	Α	Α	Т	TQ		TQ		Т					
	Ŭ	THE GOLDST Elements (GDE)				, ,			, ,					, ,	, ,	, ,		. ~									
	С	VM2 PreElect Modules (PEM)	1	Q	F	Т	TQ	TQ	TQ		TQ	М	Т				Т	TQ		TQ			Т				
-	_	1015		_													_										
-	С	VM Electronics Prototype	1	Q	Ν												Т										
	С	EM Csl Det Elements (CDE)		Q	F/N							М	Т				Т			TO	M	TQ					TQ applies to sample batches
		EM Composite Structure	1	Q	F	TQ						M	•							1 00		1 00	Α				To applies to sample bateries
3IMIS		EM Front End Elect (AFEE)	4	Q	N	A	Α	Α	Α			М	Т	Α	Α	Α	Т			TQ	М	Α	_				
	S	EM CAL Module	1	Q	N		β	β	TQ		Α	М	Т	Т	Т	Т	Т	TQ			М	Α	Α	Т	Т	Т	
豆																											
	S	SM CAL Module	1	Q	F	TQ	TQ	R	TQ			М											Α				Structural Model
	Ļ			Ļ	_																						
50	S	SFM CAL Module	1	Q	F	TQ	IQ	TQ	IQ			М											Α				Structural Flight Model
8	С	QM Csl Det Elements (CDE)		Q	F							М	Т				Т			TO	N/I	TQ					TQ applies to sample batches
	С	QM Composite Structure	1	Q	F	TQ						M								100	IVI	ΙQ	Α				TQ applies to sample batches
	С	QM Front End Elect (AFEE)	4	Q	N	A	Α	Α	Α			М	Т	Α	Α	Α	Т			TQ	М	Α	Α				
7170	S	QM CAL Module	1	Q	N			TQ			Α	М	T	Т	Т	Т	T	TQ			М	Α	Α				
		FM Csl Det Elements (CDE)		F	F							М	Т				Т			TQ	М	TQ					TQ applies to sample batches
1_		FM Composite Structure		F	F	TA						М											QS				
		FM Front End Elect (AFEE)		F	Ν	QS			QS			М			QS					TQ			QS				
2	S	FM CAL Module	17	F	Ν		ΤA	TA	TA		QS	М	Т	QS	QS	QS	Т	TA			М	QS	QS				
-	Ш		_	Ш		Н				Ш	ш		Ш	Ш		Ш			Ш		_		Ш			\vdash	
-		LEVEL OF ASSEMBLY:	-	CII	PPLI	ED.	-	-	LIN	T T	YPE					VE	DIE	CAT	ION	ME	TU)Dr			-		
\vdash		S = Subsystem	-		Fra						roto		nt			T=			IUN	IVIE	1110		= Te	aet	Oue	114	avel
		C = Component			NRL					Flig		ngi	14					alysi	is								larity
		S Sampononi		.,_	. 41 (L					Spa									reme	ent							nce Level
										_	alific	atio	n Uı	nit		_	_	ecti				Ľ.					Novel Dece

Fidelity of EM to FM

- Designed and fabricated to be as accurate a representation of the flight CAL module as possible
 - Principle: "Full flight form, fit and function"
 - Flight quality parts where available
- Known deviations from flight modules:
 - PIN photodiodes
 - FM DPD is smaller than EM by 1 mm in 2 dimensions, electrical connections are moved
 - FM DPD optical window has changed to ShinEtsu silicone
 - Additional tests of CsI-DPD bonding process are needed for new optical window. Initial tests are fully successful.
 - 14 of 96 EM CDEs were manufactured in France
 - ASICs
 - FM GCFE will be version 9. EM is version 7
 - FM GCRC will be version 5. EM is version 4
 - FM composite structure will use an improved (autoclaved) curing process
 - FM surface treatment on baseplate tabs may be different

Naval Research Lab Washington DC

Engineering Model Status

- □ Fabricated 124 CDEs, needed 96
 - 110 CDEs from US, 14 from France
 - All Engineering model CDEs were functionally tested
 - US and France CDEs have identical performance
 - Two CDEs contain DPDs with new optical window for Flight
- □ PEM CDE integration is complete
 - 96 CDEs installed
 - All 14 from France
 - 82 from US, including
 2 with new DPDs
 - Inner closeout plates installed
 - PEM testing completed

Engineering Model Status (cont)

- Assembly of all four EM AFEE boards complete
 - Both AFEE-X boards have been tested, Y boards are underway
 - One AFEE-X board is integrated

- Verified Calorimeter Test Stand
- Verified AFEE board integration
- Remaining AFEE boards are being integrated

Near Term EM Schedule

- □ PEM assembly completed Feb 10
- ☐ PEM AFEE Integration is progress
 - First AFEE board integrated March 10
 - Preliminary testing of installed AFEE board began March 13
 - Integrate remaining boards to be completed by March 26
- □ CAL TEM Integration begins March 28
- □ EM Verification Testing

EM Verification Test Flow

Engineering Model Schedule

Level 3 schedule

Activity	Total	Orig	Early	Early		
Description	Float	Dur	Start	Finish	FY03 FY04 AN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL	AUG SEP
CALEM						
4.1.5.9 CALORIMETER MODULE ASSEMBLY, TEST & CA	AL					
ND: Receive PreEM TEM from Elec to CAL		0		09/04/02A		
ND: EM1 EGSE WS-S/W R2		0		12/13/02A	 	
Receipt inspection	19	2	02/21/03	02/24/03	Receipt inspection	
PEM-to-AFEE integration	19	15	02/25/03	03/17/03	PEM-to-AFEE integration	
TEM Integration	19	5	03/18/03	03/24/03	72 month delay because of AFEE TEM Integration	
Comprehensive State Functional test	19	5	03/25/03	03/31/03	Comprehensive State Functional test	
Electronic calib	19	5	04/01/03	04/07/03	Electronic calib	
Muon calibration #2	19	5	04/08/03	04/14/03	Muon calibration #2	
EMC/EMI test	19	3	04/15/03	04/17/03	EMC/EMI test	
Mass properties #2	19	2	04/18/03	04/21/03	Mass properties #2	
Vibration test	19	10	04/22/03	05/05/03	Vibration test	
Thermal vac/ functional test	19	15	05/06/03	05/27/03	Thermal vac/ functional test	
EM additional 8 TV Cycles	27	16	05/28/03	06/12/03	EM additional 8 TV Cycles	
Muon calibration #3	18	3	06/13/03	06/17/03	Muon calibration #3	
Comprehensive Functional Test #2	18	5	06/18/03	06/24/03	Comprehensive Functional Test #2	
Ready for CAL CDR	202	0		06/24/03	Ready for CAL CDR	
Ship to SLAC	18	4	06/25/03	06/30/03	Ship to SLAC	
AV: EM from Calorimeter to I&T	18	0		06/30/03	AV: EM from Calorimeter to I&T	
AV: CAL Released Drawing Pkg to I&T	202	0		07/25/03	AV: CAL Released Drawing Pkg to I&T	
ND: EM CAL Returned to NRL (arrives on dock	123	0		08/26/03	ND: EM CAL Returned to NRL (arrives on dock)	
Ship to beam test	81	5	10/27/03*	10/31/03	Ship to beam test	
Hadronic beam test	81	20	11/03/03	12/02/03	Hadronic beam test	
EM Support for procedure development	81	44	12/03/03	02/12/04	EM Support for procedure developme	ent

